
Covering Point Patterns
Amos Lapidoth
ETH Zurich

8092 Zurich, Switzerland
amos.lapidoth@ethz.ch

Andreas Malär
ETH Zurich

8092 Zurich, Switzerland
amalaer@ee.ethz.ch

Ligong Wang
ETH Zurich

8092 Zurich, Switzerland
wang@isi.ee.ethz.ch

Abstract—An encoder observes a point pattern—a finite num-
ber of points in the interval [0, T ]—which is to be described to
a reconstructor using bits. Based on these bits, the reconstructor
wishes to select a subset of [0, T ] that contains all the points in
the pattern. It is shown that, if the point pattern is produced
by a homogeneous Poisson process of intensity λ, and if the
reconstructor is restricted to select a subset of average Lebesgue
measure not exceeding DT , then, as T tends to infinity, the
minimum number of bits per second needed by the encoder
is −λ log D. It is also shown that, as T tends to infinity, any
point pattern on [0, T ] containing no more than λT points can
be successfully described using −λ log D bits per second in this
sense. Finally, a Wyner-Ziv version of this problem is considered
where some of the points in the pattern are known to the
reconstructor.

I. INTRODUCTION

An encoder observes a point pattern—a finite number of
points in the interval [0, T ]—which is to be described to a
reconstructor using bits. Based on these bits, the reconstructor
wishes to produce a covering-set—a subset of [0, T ] containing
all the points—of least Lebesgue measure. There is a trade-off
between the number of bits used and the Lebesgue measure
of the covering-set. This trade-off can be formulated as a
continuous-time rate-distortion problem (Section III). In this
paper we investigate this trade-off in the limit where T → ∞.
When the point pattern is produced by a homogeneous

Poisson process, this problem is closely related to that of
transmitting information through an ideal peak-limited Poisson
channel [1], [2], [3], [4]. In fact, the two problems can be
considered dual in the sense of [5]. However, the duality results
of [5] only apply to discrete memoryless channels and sources,
so they cannot be directly used to solve our problem. Instead,
we shall use a technique that is similar to Wyner’s [3], [4] to
find the desired rate-distortion function. We shall show that,
if the point pattern is the outcome of a homogeneous Poisson
process of intensity λ, and if the reconstructor is restricted
to select covering-sets of average measure not exceeding DT ,
then the minimum number of bits per second needed by the
encoder to describe the pattern is −λ log D.
Previous works [6], [7] have studied rate-distortion func-

tions of the Poisson process with different distortion measures.
It is interesting to notice that our rate-distortion function,
−λ log D, is equal to the one in [7], where a queueing
distortion measure is considered. This is no coincidence, since
the Poisson channel is closely related to the queueing channel
introduced in [8].

We also show that the Poisson process is the most difficult
to cover, in the sense that any point process that, with high
probability, has no more than λT points in [0, T ] can be
described with −λ log D bits per second. This is even true if
an adversary selects the point pattern provided that the pattern
contains no more than λ points per second and that the encoder
and the reconstructor are allowed to use random codes.
Finally, we consider a Wyner-Ziv setting [9] of the problem

where some points in the pattern are known to the recon-
structor but the encoder does not know which ones they are.
This can be viewed as a dual problem to the Poisson channel
with noncausal side-information [10]. We show that in this
setting one can achieve the same minimum rate as when the
transmitter does know the reconstructor’s side-information.
The rest of this paper is arranged as follows: in Section II we

introduce some notation; in Section III we present the result
for the Poisson process; in Section IV we present the results
for general point processes and arbitrary point patterns; and
in Section V we present the results for the Wyner-Ziv setting.

II. NOTATION
We use a lower-case letter like x to denote a number, and an

upper-case letter like X to denote a random variable. We use a
boldface lower-case letter like x to denote a vector, a function
of reals, or a point pattern, and it will be clear from the context
which one we mean. If x is a vector, xi denotes its ith element.
If x is a function, x(t) denotes its value at t ∈ R. If x is a
point pattern, we use nx(·) to denote its counting function, so
nx(t2) − nx(t1) is the number of points in x that fall in the
interval (t1, t2]. We use a bold-face upper-case letter like X

to denote a random vector, a random function, or a random
point process. The random counting function corresponding to
a point process X is denoted by NX(·).
We use Ber(p) to denote the Bernoulli distribution of

parameter p, namely, the distribution that has probability p
on the outcome 1 and probability (1 − p) on the outcome 0.

III. COVERING A POISSON PROCESS
Consider a homogeneous Poisson process X of intensity λ

on the interval [0, T ]. Its counting function NX(·) satisfies

Pr [NX(t + τ) − NX(t) = k] =
e−λτ (λτ)k

k!
for all τ ∈ [0, T ], t ∈ [0, T − τ ] and k ∈ {0, 1, . . .}.
The encoder maps the realization of the Poisson process

to a message in {1, . . . , 2TR}. The reconstructor then maps



this message to a {0, 1}-valued, Lebesgue-measurable, signal
x̂(t), t ∈ [0, T ]. We wish to minimize the total length of the
region where x̂(t) = 1 while guaranteeing that all points in
the original Poisson process lie in this region. See Figure 1
for an illustration.
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Fig. 1. Illustration of the problem.

More formally, we formulate this problem as a continuous-
time rate-distortion problem, where the distortion between the
point pattern x and the reproduction signal x̂ is

d(x, x̂) !

{

µ(x̂−1(1))
T , if all points in x are in x̂−1(1)

∞, otherwise
(1)

where µ(·) denotes the Lebesgue measure.
We say that (R, D) is an achievable rate-distortion pair for

the homogeneous Poisson process of intensity λ if, for every
ε > 0, there exists some T0 > 0 such that, for every T > T0,
there exists an encoder fT (·) and a reconstructor φT (·) of
rate R+ ε bits per second which, when applied to the Poisson
process X on [0, T ], gives

E
[

d
(

X, φT (fT (X))
)]

≤ D + ε.

Denote by R(D,λ) the minimum rate R such that (R, D) is
achievable for the homogeneous Poisson process of intensity
λ. Define

RPois(D,λ) !

{

−λ log D bits per second, D ∈ (0, 1)

0, D ≥ 1.
(2)

Theorem 1: For all D,λ > 0,

R(D,λ) = RPois(D,λ). (3)

To prove Theorem 1, we propose a scheme to reduce the
original problem to one for a discrete memoryless source.
This is reminiscent of Wyner’s scheme for reducing the peak-
limited Poisson channel to a discrete memoryless channel [3].
We shall show the optimality of this scheme in Lemma 1, and
we shall then prove Theorem 1 by computing the best rate
that is achievable using this scheme.
Scheme 1: We divide the time-interval [0, T ] into slots of ∆

seconds long. The encoder first maps the original point pattern
x to a {0, 1}-valued vector x′ of length T

∆
1 in the following

way: if x has at least one point in the time-slot ((i−1)∆, i∆],

1When T is not divisible by ∆, we consider x as a pattern on [0, T ′] where
T ′ = ! T

∆
"∆. When we let ∆ tend to zero, the difference between T and

T ′ also tends to zero. Henceforth we ignore this technicality and assume T
is divisible by ∆.

choose x′
i = 1; otherwise choose x′

i = 0. The encoder then
maps x′ to a message in {1, . . . , 2TR}.
Based on the encoder’s message, the reconstructor produces

a {0, 1}-valued length- T
∆ vector x̂′ to meet the distortion

criterion
E

[

d′(X′, X̂′)
]

≤ D + ε,

where the distortion measure d′(·, ·) is given by

d′(0, 0) = 0

d′(0, 1) = 1

d′(1, 0) = ∞

d′(1, 1) = 1.

It then maps x̂′ to a continuous-time signal x̂ through

x̂(t) = x̂′
# t

∆
$, t ∈ [0, T ].

Scheme 1 reduces the task of designing a code forX subject
to distortion d(·, ·) to the task of designing a code for the
vector X′ subject to the distortion d′(·, ·). The way we define
d′(·, ·) yields the simple relation

d(x, x̂) = d′(x′, x̂′). (4)

When X is the homogeneous Poisson process of intensity
λ, the components of X′ are independent and identically
distributed (IID) Ber(1−e−λ∆). Let R∆(D,λ) denote the rate-
distortion function forX′ and d′(·, ·). If we combine Scheme 1
with an optimal code forX′ subject to E

[

d′(X′, X̂′)
]

< D+ε,
we can achieve any rate that is larger than

R∆(D,λ) bits
∆ seconds

.

The next lemma, which is reminiscent of [4, Theorem 2.1],
shows that when we let ∆ tend to zero, there is no loss in
optimality in using Scheme 1.
Lemma 1: For all D,λ > 0,

R(D,λ) = lim
∆↓0

R∆(D,λ)

∆
. (5)

Proof: See Appendix.
Proof of Theorem 1: We derive R(D,λ) by computing

the right-hand side of (5). To compute R∆(D,λ) we apply
Shannon’s formula of the rate-distortion function for a discrete
memoryless source [11]:

R∆(D,λ) = min
PẐ|Z :E[d∆(Z,Ẑ])≤D

I(Z; Ẑ).2 (6)

When D ∈ (0, 1), the conditional distribution PẐ|Z which
achieves the minimum on the right-hand side of (6) is

P ∗
Ẑ|Z

(1|0) = Deλ∆ − eλ∆ + 1,

P ∗
Ẑ|Z

(1|1) = 1.

2Strictly speaking, since our distortion measure is unbounded, we need to
modify Shannon’s proof of this formula in order to use it for our problem. This
can be done by letting the reconstructor produce the all-one sequence, which
yields bounded distortion for any source sequence, whenever no codeword
can be found that is jointly typical with the source sequence.



Computing the mutual information I(Z; Ẑ) under this P ∗
Ẑ|Z

yields

R∆(D,λ) = Hb(D)−e−λ∆Hb(Deλ∆−eλ∆+1), D ∈ (0, 1),
(7)

where Hb(·) denotes the binary entropy function.
When D ≥ 1, it is optimal to choose Ẑ = 1 (deterministi-

cally), yielding

R∆(D,λ) = 0, D ≥ 1. (8)
Combining (5), (7) and (8) and computing the limit as ∆

tends to zero yields (3).
IV. COVERING GENERAL POINT PROCESSES AND

ARBITRARY POINT PATTERNS
We next consider a general point process Y. We assume

that there exists some λ such that

lim
t→∞

Pr

[

NY(t)

t
> λ + δ

]

= 0 for all δ > 0. (9)

Condition (9) is satisfied, for example, when Y is an ergodic
process whose expected number of points per second is less
than or equal to λ.
Since the Poisson process is memoryless, one naturally

expects it to be the most difficult to describe. This is indeed
the case, as the next theorem shows.
Theorem 2: The pair (RPois(D,λ), D) is achievable on any

point process satisfying (9).
Before proving Theorem 2, we state a stronger result.

Consider a point pattern z chosen by an adversary on the
interval [0, T ] which contains no more than λT points. The
corresponding counting function nz(·) must then satisfy

nz(T ) ≤ λT. (10)

The encoder and the reconstructor are allowed to use random
codes. Namely, they fix a distribution on all (deterministic)
codes of a certain rate on [0, T ]. According to this distribution,
they randomly pick a code which is not revealed to the
adversary. They then apply it to the point pattern z chosen by
the adversary. We say that (R, D) is achievable with random
coding against an adversary subject to (10) if, for every ε > 0,
there exists some T0 such that, for every T > T0, there exists
a random code on [0, T ] of rate R + ε such that the expected
distortion between any z satisfying (10) and its reconstruction
is smaller than D + ε.
Theorem 3: The pair (RPois(D,λ), D) is achievable with

random coding against an adversary subject to (10).
Proof: First note that when D ≥ 1, the encoder does not

need to describe the pattern: the reconstructor simply produces
the all-one function, yielding distortion 1 for any z. Hence the
pair (0, D) is achievable with random coding.
Next considerD ∈ (0, 1). We use Scheme 1 as in Section III

to reduce the original problem to one of random coding for an
arbitrary discrete-time sequence z′. Here z′ is {0, 1}-valued,
has length T

∆ , and satisfies
T/∆
∑

i=1

z′i ≤ λT. (11)

We shall construct a random code of rate R
∆ which, when

applied to any z′ satisfying (11), yields

E
[

d′(z′, Ẑ′)
]

< D + ε,

where the random vector Ẑ′ is the result of applying the
random encoder and decoder to z′. Combined with Scheme 1
this random code will yield a random code on the continuous-
time point pattern z that achieves the rate-distortion pair
(R, D).
Our discrete-time random code consists of 2TR {0, 1}-

valued, length- T
∆ random sequences Ẑ′

m, m ∈ {1, . . . , 2TR}.
The first sequence Ẑ′

1 is chosen deterministically to be the
all-one sequence. The other 2TR − 1 sequences are drawn
independently, with each sequence drawn IID Ber(D).
To describe source sequence z′, the encoder looks for a

codeword ẑ′m, m ∈ {2, . . . , 2TR} such that

ẑ′m,i = 1 whenever z′i = 1. (12)

If it finds one or more such codewords, it sends the index of
the first one; otherwise it sends 1. The reconstructor outputs
the sequence ẑ′m where m is the message it receives from the
encoder.
We next analyze the expected distortion of this random code

for a fixed z′ satisfying (11). Define

µ !

∑T/∆
i=1 z′i
T

,

and note that by (11) µ ≤ λ. Denote by E the event that the
encoder cannot find ẑ′m, m ∈ {2, . . . , 2TR} satisfying (12). If
E occurs, the encoder sends 1 and the resulting distortion is
equal to 1.
The probability that a randomly drawn codeword Ẑ′

m satis-
fies (12) is

DµT ≥ DλT = 2(λ log D)T .

Because the codewords Ẑ′
m, m ∈ {2, . . . , 2TR} are chosen

independently, if we choose R > −λ log D, then Pr[E ] → 0
as T → ∞. Hence, for large enough T , the contribution to
the expected distortion from the event E can be ignored.
We next analyze the expected distortion conditional on Ec.

The reproduction Ẑ′ has the following distribution: at positions
where z′ takes the value 1, Ẑ′ must also be 1; at other positions
the elements of Ẑ′ have the IID Ber(D) distribution. Thus the
expected value of

∑T/∆
i=1 Ẑ ′

i is µT + D( T
∆ − µT ), and

E
[

d′(z′, Ẑ′)
∣

∣

∣
Ec

]

= D + (1 − D)µ∆.

When we let ∆ tend to zero, this value tends to D. We have
thus shown that, for small enough ∆, we can achieve the pair
(R/∆, D) on z′ with random coding wheneverR > −λ log D,
and therefore we can also achieve (R, D) on the continuous-
time point pattern z with random coding if R > −λ log D.

We next use Theorem 3 to prove Theorem 2.
Proof of Theorem 2: It follows from Theorem 3 that, on

any point process satisfying (9), the pair (RPois(D,λ+ δ), D)



is achievable with random coding. Further, since there is no
adversary, the existence of a good random code guarantees the
existence of a good deterministic code. Hence (RPois(D,λ +
δ), D) is also achievable on this process with deterministic
coding. Theorem 2 now follows when we let δ tend to zero,
since RPois(D, ·) is a continuous function.

V. SOME POINTS ARE KNOWN TO THE RECONSTRUCTOR
In this section we consider a Wyner-Ziv setting for our

problem. We first consider the case whereX is a homogeneous
Poisson process of intensity λ. (Later we consider an arbitrary
point pattern.) Assume that each point in X is known to the
reconstructor independently with probability p. Also assume
that the encoder does not know which points are known
to the reconstructor. The encoder maps X to a message in
{1, . . . , 2TR}, and the reconstructor produces a Lebesgue-
measurable, {0, 1}-valued signal X̂ on [0, T ] based on this
message and the positions of the points that he knows. The
achievability of a rate-distortion pair is defined in the same
way as in Section III. Denote the smallest rate R for which
(R, D) is achievable by RWZ(D,λ, p).
Obviously, RWZ(D,λ, p) is lower-bounded by the smallest

achievable rate when the transmitter does know which points
are known to the reconstructor. The latter rate is given by
RPois(D, (1 − p)λ), where RPois(·, ·) is given by (2). Indeed,
when the encoder knows which points are known to the
reconstructor, it is optimal for it to describe only the remain-
ing points, which themselves form a homogeneous Poisson
process of intensity (1− p)λ. The reconstructor then selects a
set based on this description to cover the points unknown to
it and adds to this set the points it knows. Thus,

RWZ(D,λ, p) ≥ RPois(D, (1 − p)λ). (13)

The next theorem shows that (13) holds with equality.
Theorem 4: Knowing the points at the reconstructor only is

as good as knowing them also at the encoder:

RWZ(D,λ, p) = RPois(D, (1 − p)λ). (14)

To prove Theorem 4, it remains to show that the pair
(RPois(D, (1−p)λ), D) is achievable. We shall show this as a
consequence of a stronger result concerning arbitrarily varying
sources.
Consider an arbitrary point pattern z on [0, T ] chosen by an

adversary. The adversary is allowed to put at most λT points
in z. Also, it must reveal all but at most νT points to the
reconstructor, without telling the encoder which points it has
revealed. The encoder and the reconstructor are allowed to use
random codes, where the encoder is a random mapping from z

to a message in {1, . . . , 2TR}, and where the reconstructor is
a random mapping from this message, together with the point
pattern that it knows, to a {0, 1}-valued, Lebesgue-measurable
signal ẑ. The distortion d(z, ẑ) is defined as in (1).
Theorem 5: Against an adversary who puts at most λT

points on [0, T ] and reveals all but at most νT points to
the reconstructor, the rate-distortion pair (RPois(D, ν), D) is
achievable with random coding.

Proof: The case D ≥ 1 is trivial, so we shall only
consider the case where D ∈ (0, 1). The encoder and the
reconstructor first use Scheme 1 as in Section III to reduce
the point pattern z to a {0, 1}-valued vector z′ of length T

∆ .
Define

µ !

∑T/∆
i=1 z′i
T

,

and note that, by assumption, µ ≤ λ. If µ ≤ ν, then we can
ignore the reconstructor’s side-information and use the random
code of Theorem 3. Henceforth we assume µ > ν.
Denote by s the point pattern known to the reconstructor and

by s′ the vector obtained from s through the discretization in
time of Scheme 1. Since there are at most νT points that are
unknown to the reconstructor,

T/∆
∑

i=1

s′i ≥ (µ − ν)T. (15)

The encoder conveys the value of µT to the receiver using
bits. Since µT is an integer between 0 and λT , the number of
bits per second needed to describe it tends to zero as T tends
to infinity.
Next, the encoder and the reconstructor randomly generate

2T (R+R̃) independent codewords

ẑ
′
m,l, m ∈ {1, . . . , 2TR}, l ∈ {1, . . . , 2TR̃},

where each codeword is generated IID Ber(D).
To describe z′, the encoder looks for a codeword ẑ′m,l such

that
ẑ′m,l,i = 1 whenever z′i = 1. (16)

If it finds one or more such codewords, it sends the index m
of the first one; otherwise it tells the reconstructor to produce
the all-one sequence.
When the reconstructor receives the index m, it looks for

an index l̃ ∈ {1, . . . , 2TR̃} such that

ẑ′
m,l̃,i

= 1 whenever s′i = 1. (17)

If there is only one such codeword, it outputs it as the
reconstruction; if there are more than one such codewords,
it outputs the all-one sequence.
To analyze the expected distortion for z′ over this random

code, first consider the event that the encoder cannot find
a codeword satisfying (16). Note that the probability that a
randomly generated codeword satisfies (16) is DµT , so the
probability of this event tends to zero as T tends to infinity
provided that

R + R̃ > −µ logD. (18)

Next consider the event that the reconstructor finds more
than one l̃ satisfying (17). The probability that a randomly
generated codeword satisfies (17) is D

PT/∆

i=1
s′

i . Consequently,
by (15) the probability of this event tends to zero as T tends
to infinity provided

R̃ < −(µ − ν) log D. (19)



Finally, if the encoder finds a codeword satisfying (16) and
the reconstructor finds only one codeword satisfying (17),
then the two codewords must be the same. Following the
same calculations as in the proof of Theorem 3, the expected
distortion in this case tends to D as ∆ tends to zero.
Combining (18) and (19), we can make the expected dis-

tortion arbitrarily close to D as T → ∞ if

R > −ν log D.

Proof of Theorem 4: The claim follows from (13),
Theorem 5, and the Law of Large Numbers.

APPENDIX
In this appendix we prove Lemma 1. Given any rate-

distortion code with 2TR codewords x̂m, m ∈ {1, . . . , 2TR}
that achieves expected distortion D, we shall construct a new
code that can be constructed through Scheme 1, that contains
(2TR +1) codewords, and that achieves an expected distortion
that is arbitrarily close to D.
Denote the codewords of our new code by ŵm, m ∈

{1, . . . , 2TR +1}. We choose the last codeword to be the con-
stant 1. We next describe our choices for the other codewords.
For every ε > 0 and every x̂m, we can approximate the set
{t : x̂m(t) = 1} by a set Am that is equal to a finite, say Nm,
union of open intervals. More specifically,

µ
(

x̂−1
m (1) 'Am

)

≤ 2−TRε, (20)

where ' denotes the symmetric difference between two sets
(see, e.g., [12, Chapter 3, Proposition 15]). Define

B !

2T R
⋃

m=1

(

x̂−1
m (1) \ Am

)

,

and note that by (20)

µ(B) ≤ ε. (21)

For each Am, m ∈ {1, . . . , 2TR}, define

Tm !
{

t ∈ [0, T ] :
(

((t/∆) − 1)∆, (t/∆)∆
]

∩Am += ∅
}

.

We now construct ŵm, m ∈ {1, . . . , 2TR} as

ŵm = 1Tm ,

where 1S denotes the indicator function of the set S. Note
that Am ⊆ Tm = ŵ−1

m (1). See Figure 2 for an illustration of
this construction. Let

!
t∆

$!

!
t

1Am

ŵm

Fig. 2. Constructing ŵm from Am.

N ! max
m∈{1,...,2TR}

Nm.

It can be seen that

µ
(

ŵ−1
m (1)

)

− µ(Am) ≤ 2N∆, m ∈ {1, . . . , 2TR}. (22)

Our encoder works as follows: if x contains no point in B, it
maps x to the same message as the given encoder; otherwise
it maps x to the index (2TR + 1) of the all-one codeword. To
analyze the distortion, first consider the case where x contains
no point in B. In this case, all points in x must be covered by
the selected codeword ŵm. By (20) and (22), the difference
d(x, ŵm)−d(x, x̂m), if positive, can be made arbitrarily small
by choosing small ε and ∆. Next consider the case where x

does contain points in B. By (21), the probability that this
happens can be made arbitrarily small by choosing ε small,
therefore its contribution to the expected distortion can also be
made arbitrarily small. We conclude that our code {ŵm} can
achieve a distortion that is arbitrarily close to the distortion
achieved by the original code {x̂m}. This concludes the proof
of Lemma 1.
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